Алферьев Д.А. Практика реализации сверточных нейронных сетей в сельском хозяйстве и агропромышленном комплексе // АгроЗооТехника. 2020. Т. 3. № 2. DOI: 10.15838/alt.2020.3.2.4 URL: http://azt-journal.ru/article/28585
Шваб К. Технологии четвертой промышленной революции. М.: Эксмо, 2018. 320 с.
Шваб К. Четвертая промышленная революция. М.: Эксмо, 2018. 288 с.
Алферьев Д.А. Искусственный интеллект в сельском хозяйстве // АгроЗооТехника. 2018. Т. 1. № 4. DOI: 10.15838/alt.2018.1.4.5
Шутьков А.А., Анищенко А.Н. Будущее искусственного интеллекта, нейросетей и цифровых технологий в АПК // Экономика и социум: современные модели развития. 2019. Т. 9. № 4 (26). С. 508–522. DOI: 10.18334/ecsoc.9.4.100454
Adhitya Y., Prakosa W.S., Köppen M. [et al.]. Convolutional Neural Network Application in Smart Farming. International Conference on Soft Computing in Data Science. SCDS 2019: Soft Computing in Data Science, pp. 287–297. URL: https://link.springer.com/chapter/10.1007/978-981-15-0399-3_23
Kamilaris A., Prenafeta-Boldú F.X. A review of the use of convolutional neural networks in agriculture. The Journal of Agricultural Science, 2018, no. 156 (3), pp. 312–322. DOI: 10.1017/S0021859618000436
Обработка и анализ цифровых изображений с примерами на LabVIEW IMAQ Vision / Ю.В. Визильтер [и др.]. М.: ДМК Пресс, 2007. 464 с.
Желтов С.Ю., Визильтер Ю.В. Машинное зрение как прикладная техническая дисциплина // Вестн. комп. и информ. технологий. 2004. № 3 (3).
Клетте Р. Компьютерное зрение. Теория и алгоритмы. М.: ДМК Пресс, 2019. 506 с.
Солем Я.Э. Программирование компьютерного зрения на языке Python. М.: ДМК Пресс, 2016. 312 с.
Marr D., Hildreth E. Theory of edge detection. Proc. R. Soc. (London), 1980, B 207, pp. 187–217.
Венецкий С. Виды архитектур нейронных сетей. URL: https://geekbrains.ru/events/1461
LeCun Y., Boser B., Denker J.S. [et al.]. Back-Propagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1989, no. 1 (4), pp. 541–551. DOI: 10.1162/neco.1989.1.4.541
Сазыкин А. Сверточные нейронные сети // Глубокие нейронные сети на Python. 2016. URL: https://www.youtube.com/watch?v=52U4BG0ENiM&list=PLtPJ9lKvJ4oi5ATzKmmp6FznCHmnhVoey&index=2&t=0s
Айфичер Э.С., Джервис Б.У. Цифровая обработка сигналов: практический подход: пер. с англ. 2-е изд. М.: Вильямс, 2004. 992 с.
Нейросеть позволит обнаружить фитопатологию по фотографии / ФГБУН ИПУ РАН. URL: https://www.ipu.ru/press-center/55927
iFarm – система распознавания рыб для выявления больных особей // TADVISER. 2018. URL: https://www.youtube.com/watch?v=eTtXopobi4U&feature=emb_logo
Дашковский И. Под контролем. Искусственный интеллект следит за порядком на агропредприятиях // Агроинвестор. 2019. URL: https://www.agroinvestor.ru/technologies/article/31101-pod-kontrolem/
Бутрова Е.В., Павлов В.А., Ковков Д.В. Разработка рекомендаций по адаптации лучших мировых практик применения результатов дистанционного зондирования земли для решения проблем в сельском хозяйстве России // Вопросы электромеханики. Труды ВНИИЭМ. 2019. Т. 171. № 4. С. 45–52. URL: https://elibrary.ru/item.asp?id=40381452
Сравнительный анализ использования нейросетевых алгоритмов для сегментации объектов на спутниковых снимках / В. Павлов [и др.] // Цифровая обработка сигналов и ее применение (DSPA2019): докл. 21-й междунар. конф. 2019. С. 399–403.
Ronneberger O., Fischer P., Brox T. U-Net: convolutional networks for biomedical imagensegmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015, no. 9351, pp. 234–241.
Badrinarayanan V., Kendall A., Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, no. 39 (12), pp. 2481–2495.
Chaurasia A., Culurciello E. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation. IEEE Visual Communications and Image Processing (VCIP), 2017, pp. 1–4.
Shadrin D., Menshchikov A., Somov A. [et al.]. Enabling Precision Agriculture through Embedded Sensing with Artificial Intelligence. IEEE, 2019. DOI: 10.1109/TIM.2019.2947125
Алферьев Д.А. Технологии ИИ как метод прогнозной аналитики // Искусственные общества. 2018. № 4. DOI: 10.18254/S0000137-9-1
Борисевич М.Н. Компьютерный нейроимитатор внутренних незаразных болезней животных // Вестн. ВГМУ. 2017. № 6. С. 125–130.
Борисевич М.Н. Информационные технологии в ветеринарной медицине. Витебск: ВГАВМ, 2007. 548 с.